Installingcmc,;cc;'c Matplotlib

2017-01-12 19:06:36来源:CSDN作者:BBZZ2人点击

第七城市
在使用NumPy进行学习统计计算时我们需要把它图形化显示。 
Matplotlib是一个Python的图形框架,类似于MATLAB和R语言。

Matplotlib的官网地址是 http://matplotlib.org/ ,下载地址为http://matplotlib.org/downloads.html,选择对应的版本即可安装,我选择的版本为 matplotlib-1.3.1.win32-py2.7.exe。

Linux : using your package manager

If you are on Linux, you might prefer to use your package manager. matplotlib is packaged for almost every major Linux distribution.

  • Debian / Ubuntu : sudo apt-get install python-matplotlib
  • Fedora / Redhat : sudo yum install python-matplotlib

Mac OSX : using pip

If you are on Mac OSX you can probably install matplotlib binaries using the standard Python installation program pip. See Installing OSX binary wheels.

Windows

If you don’t already have Python installed, we recommend using one of the scipy-stack compatible Python distributions such as WinPython, Python(x,y), Enthought Canopy, or Continuum Anaconda, which have matplotlib and many of its dependencies, plus other useful packages, preinstalled.

For standard Python installations, install matplotlib using pip:

python -m pip install -U pip setuptoolspython -m pip install matplotlib

In case Python 2.7 or 3.4 are not installed for all users, the Microsoft Visual C++ 2008 ( 64 bit or 32 bit for Python 2.7) or Microsoft Visual C++ 2010 ( 64 bit or 32 bit for Python 3.4) redistributable packages need to be installe


由于我之前已经安装过NumPy1.8,所以安装Matplotlib后只需要安装 dateutil 和 pyparsing,win32的安装文件可以在这里找到 http://www.lfd.uci.edu/~gohlke/pythonlibs/。

所有配套组件都安装成功后如果执行 import matplotlib.pyplot as plt 出错,请参考这篇文章http://blog.csdn.net/yang6464158/article/details/18546871#comments 
    安装  scipy,然后把C:/Python27/Lib/site-packages/scipy/lib中的six.py six.pyc six.pyo三个文件拷贝到C:/Python27/Lib/site-packages目录下。
import numpy as npimport matplotlib.pyplot as pltN = 5menMeans = (20, 35, 30, 35, 27)menStd =   (2, 3, 4, 1, 2)ind = np.arange(N)  # the x locations for the groupswidth = 0.35       # the width of the barsfig, ax = plt.subplots()rects1 = ax.bar(ind, menMeans, width, color='r', yerr=menStd)womenMeans = (25, 32, 34, 20, 25)womenStd =   (3, 5, 2, 3, 3)rects2 = ax.bar(ind+width, womenMeans, width, color='y', yerr=womenStd)# add someax.set_ylabel('Scores')ax.set_title('Scores by group and gender')ax.set_xticks(ind+width)ax.set_xticklabels( ('G1', 'G2', 'G3', 'G4', 'G5') )ax.legend( (rects1[0], rects2[0]), ('Men', 'Women') )def autolabel(rects):    # attach some text labels    for rect in rects:        height = rect.get_height()        ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height),                ha='center', va='bottom')autolabel(rects1)autolabel(rects2)plt.show()
运行上面代码,执行后如下图所示。

Python-Matplotlib安装及简单使用

第七城市

最新文章

123

最新摄影

微信扫一扫

第七城市微信公众平台