洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

2018-02-20 19:38:08来源:cnblogs.com作者:自为风月马前卒人点击

分享

题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

输入输出格式

输入格式:

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

输出格式:

输出最小费用

输入输出样例

输入样例#1: 复制
5 434214
输出样例#1: 复制
1



单调队列优化DP
具体思路就是列出DP方程
$dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j+L)^2)$
然后证明决策单调性,之后根据得到的公式转移。
推倒过程懒得写了
推荐一篇写的炒鸡详细的博客
http://www.cnblogs.com/MashiroSky/p/5968118.html


#include<cstdio>#include<cstring>#define int long long const int MAXN=1e5+10,INF=1e8+10;using namespace std;inline char nc(){    static char buf[MAXN],*p1=buf,*p2=buf;    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin)),p1==p2?EOF:*p1++;}inline int read(){    char c=nc();int x=0,f=1;    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}    while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}    return x*f;}int N,L;int a[MAXN],sum[MAXN],f[MAXN],dp[MAXN];int Q[MAXN],l=1,r=1;double slope(int j,int k){    return (dp[j]-dp[k]+(f[j]+L)*(f[j]+L)-(f[k]+L)*(f[k]+L))/(2.0*(f[j]-f[k]));}main(){    #ifdef WIN32    freopen("a.in","r",stdin);    #else    #endif    N=read();L=read();L++;//C=L+1    for(int i=1;i<=N;i++) a[i]=read(),sum[i]=sum[i-1]+a[i],f[i]=sum[i]+i;    for(int i=1;i<=N;i++)    {        while(l<r&&slope(Q[l],Q[l+1])<=f[i]) l++;        dp[i]=dp[Q[l]]+(f[i]-L-f[Q[l]])*(f[i]-L-f[Q[l]]);        while(l<r&&slope(Q[r-1],Q[r])>slope(Q[r],i)) r--;        Q[++r]=i;    }    printf("%lld",dp[N]);    return 0;}
 

最新文章

123

最新摄影

闪念基因

微信扫一扫

第七城市微信公众平台