HBase Region划分策略总结

2017-12-28 08:01:57来源:CSDN作者:Thousa_Ho人点击

分享

1.Region切分触发策略

在最新稳定版(1.2.6)中,HBase已经有多达6种切分触发策略。当然,每种触发策略都有各自的适用场景,用户可以根据业务在表级别选择不同的切分触发策略。常见的切分策略如下图

这里写图片描述

  • ConstantSizeRegionSplitPolicy:0.94版本前默认切分策略

这是最容易理解但也最容易产生误解的切分策略,从字面意思来看,当region大小大于某个阈值(hbase.hregion.max.filesize)之后就会触发切分,实际上并不是这样,真正实现中这个阈值是对于某个store来说的,即一个region中最大store的大小大于设置阈值之后才会触发切分。另外一个大家比较关心的问题是这里所说的store大小是压缩后的文件总大小还是未压缩文件总大小,实际实现中store大小为压缩后的文件大小(采用压缩的场景)。ConstantSizeRegionSplitPolicy相对来来说最容易想到,但是在生产线上这种切分策略却有相当大的弊端:切分策略对于大表和小表没有明显的区分。阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,这对业务来说并不是什么好事。如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。

  • IncreasingToUpperBoundRegionSplitPolicy : 0.94版本~2.0版本默认切分策略

切分策略稍微有点复杂,总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大store大小大于设置阈值就会触发切分。但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系 :(#regions) * (#regions) * (#regions) * flush size * 2,当然阈值并不会无限增大,最大值为用户设置的MaxRegionFileSize。这种切分策略很好的弥补了ConstantSizeRegionSplitPolicy的短板,能够自适应大表和小表。而且在大集群条件下对于很多大表来说表现很优秀,但并不完美,这种策略下很多小表会在大集群中产生大量小region,分散在整个集群中。而且在发生region迁移时也可能会触发region分裂。

  • SteppingSplitPolicy: 2.0版本默认切分策略

这种切分策略的切分阈值又发生了变化,相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些,依然和待分裂region所属表在当前regionserver上的region个数有关系,如果region个数等于1,切分阈值为flush size * 2,否则为MaxRegionFileSize。这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。

另外,还有一些其他分裂策略,比如使用DisableSplitPolicy:可以禁止region发生分裂;而KeyPrefixRegionSplitPolicy,DelimitedKeyPrefixRegionSplitPolicy对于切分策略依然依据默认切分策略,但对于切分点有自己的看法,比如KeyPrefixRegionSplitPolicy要求必须让相同的PrefixKey待在一个region中。

在用法上,一般情况下使用默认切分策略即可,也可以在cf级别设置region切分策略,命令为:

create ’table’, {NAME => ‘cf’, SPLIT_POLICY => ‘org.apache.hadoop.hbase.regionserver. ConstantSizeRegionSplitPolicy'} 

Region切分准备工作-寻找SplitPoint

region切分策略会触发region切分,切分开始之后的第一件事是寻找切分点-splitpoint。所有默认切分策略,无论是ConstantSizeRegionSplitPolicy、 IncreasingToUpperBoundRegionSplitPolicy 抑或是SteppingSplitPolicy,对于切分点的定义都是一致的。当然,用户手动执行切分时是可以指定切分点进行切分的,这里并不讨论这种情况

那切分点是如何定位的呢? 整个region中最大store中的最大文件中最中心的一个block的首个rowkey 。这是一句比较消耗脑力的语句,需要细细品味。另外,HBase还规定,如果定位到的rowkey是整个文件的首个rowkey或者最后一个rowkey的话,就认为没有切分点。

什么情况下会出现没有切分点的场景呢?最常见的就是一个文件只有一个block,执行split的时候就会发现无法切分。很多新同学在测试split的时候往往都是新建一张新表,然后往新表中插入几条数据并执行一下flush,再执行split,奇迹般地发现数据表并没有真正执行切分。

Region核心切分流程

HBase将整个切分过程包装成了一个事务,意图能够保证切分事务的原子性。整个分裂事务过程分为三个阶段:prepare – execute – (rollback)

  • prepare阶段:在内存中初始化两个子region,具体是生成两个HRegionInfo对象,包含tableName、regionName、startkey、endkey等。同时会生成一个transaction journal,这个对象用来记录切分的进展,具体见rollback阶段。
  • execute阶段:切分的核心操作。见下图(来自 Hortonworks ):

这里写图片描述

  1. regionserver 更改ZK节点 /region-in-transition 中该region的状态为SPLITING。
  2. master通过watch节点/region-in-transition检测到region状态改变,并修改内存中region的状态,在master页面RIT模块就可以看到region执行split的状态信息。
  3. 在父存储目录下新建临时文件夹.split保存split后的daughter region信息。
  4. 关闭parent region:parent region关闭数据写入并触发flush操作,将写入region的数据全部持久化到磁盘。此后短时间内客户端落在父region上的请求都会抛出异常NotServingRegionException。
  5. 核心分裂步骤:在.split文件夹下新建两个子文件夹,称之为daughter A、daughter B,并在文件夹中生成reference文件,分别指向父region中对应文件。这个步骤是所有步骤中最核心的一个环节,生成reference文件日志如下所示:

这里写图片描述

除此之外,还需要关注reference文件的文件内容,reference文件是一个引用文件(并非linux链接文件),文件内容很显然不是用户数据。文件内容其实非常简单,主要有两部分构成:其一是切分点 splitkey,其二是一个boolean类型的变量(true或者false),true表示该reference文件引用的是父文件的上半部分(top),而false表示引用的是下半部分 (bottom)。

6.父region分裂为两个子region后, 将daughter A、daughter B拷贝到HBase根目录下,形成两个新的region。

7.parent region通知修改 hbase.meta 表后下线,不再提供服务。下线后parent region在meta表中的信息并不会马上删除,而是标注split列、offline列为true,并记录两个子region

这里写图片描述

8.开启daughter A、daughter B两个子region。通知修改 hbase.meta 表,正式对外提供服务

这里写图片描述

rollback阶段:如果execute阶段出现异常,则执行rollback操作。为了实现回滚,整个切分过程被分为很多子阶段,回滚程序会根据当前进展到哪个子阶段清理对应的垃圾数据。代码中使用 JournalEntryType 来表征各个子阶段,具体见下图:

这里写图片描述

最新文章

123

最新摄影

闪念基因

微信扫一扫

第七城市微信公众平台