Ubuntu 16.04 + GTX970 + cuda8.0.44安装配置等问题

2017-01-14 19:52:13来源:CSDN作者:u010094199人点击

首先介绍一下我的电脑配置,我的显卡是NVIDIA GTX970

1. 安装双系统(Ubuntu16.04 + Windows 7)全都是64位的操作系统

          我用U盘制作系统盘安装Ubuntu16.04的时候,遇到如下问题:无法将启动引导正常安装

                            

            重新安装了好几次都是这样,找不到解决方案,有同学知道怎么解决的可以安利一下我~

             由于Ubuntu14.04安装cuda的时候坑太多,看好几个帖子都这么说的,我还是坚定地想装Ubunt16.04

             然后参考:从Ubuntu 14.04 LTS版升级到Ubuntu 16.04 LTS。到此,Ubuntu16.04安装成功!

2. 安装NVIDIA显卡驱动

        这里要引用PPA第三方库,因为直接从NVIDIA官方安装,会有显示器黑屏、进入不了tty1界面等一系列问题,没办法,Ubuntu对于NVIDIA显卡驱动的支持不太好

    sudo add-apt-repository ppa:graphics-drivers/ppa    //引入PPA库里的显卡驱动

        如果引用成功,则会显示如下图所示:        

   Fresh drivers from upstream, currently shipping Nvidia.   ## Current Status   Current official release: `nvidia-370` (370.28)   Current long-lived branch release: `nvidia-367` (367.57)   For GeForce 8 and 9 series GPUs use `nvidia-340` (340.98)   For GeForce 6 and 7 series GPUs use `nvidia-304` (304.132)   ## What we're working on right now:   - Normal driver updates   - Help Wanted: Mesa Updates for Intel/AMD users, ping us if you want to help do this work, we're shorthanded. 

        接下来安装当前的长期稳定版nvidia-367驱动

 sudo service lightdm stop                     sudo apt-get install nvidia-367              sudo service lightdm start                 sudo reboot                                   nvidia-smi   

     这里需要先关闭图形桌面,如果不关闭,可能会在安装显卡驱动的时候提示X server未关闭的错误,从而导致安装失败

     如果显卡驱动安装成功,则在执行完nvidia-smi语句后,输出如下:

  Sat Jan 14 10:41:03 2017         +-----------------------------------------------------------------------------+  | NVIDIA-SMI 367.57                 Driver Version: 367.57                    |  |-------------------------------+----------------------+----------------------+  | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |  | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |  |===============================+======================+======================|  |   0  GeForce GTX 970     Off  | 0000:01:00.0     Off |                  N/A |  | 30%   30C    P8    19W / 200W |    121MiB /  4036MiB |      0%      Default |  +-------------------------------+----------------------+----------------------+                                                                                 +-----------------------------------------------------------------------------+  | Processes:                                                       GPU Memory |  |  GPU       PID  Type  Process name                               Usage      |  |=============================================================================|  |    0      1386    G   /usr/lib/xorg/Xorg                             111MiB |  |    0      2341    G   compiz                                           8MiB |  +-----------------------------------------------------------------------------+
   若安装失败,卸载未安装成功的显卡驱动,再重新安装
  $ sudo apt-get remove --purge nvidia-*                   #卸载显卡驱动
3. Cuda安装

       Cuda官方下载地址:https://developer.nvidia.com/cuda-downloads      我用的是 cuda_8.0.44_linux.run 版本

          

  进入cuda_8.0.44_linux.run 所在目录,执行下面的语句开始安装cuda

   $  sudo sh cuda_8.0.44_linux.run

  可能遇到的选项:

        是否接受许可条款:       accept        
        是否安装NVIDIA driver:no                #因为我们已经安装了NVIDIA显卡驱动
        是否安装cuda toolkit :   yes
        是否安装cuda samples:yes
        中间会有提示是否确认选择默认路径当作安装路径,按Enter键即可。

   若安装失败,且最后错误的提示为:

   Not enough space on parition mounted at /tmp.Need 5091561472 bytes.
   Disk space check has failed. Installation cannot continue.

  即错误提示为/tmp空间不足,可执行下面的操作:

    ====如果执行$ sudo sh cuda_8.0.44_linux.run 时提示/tmp空间不足,则执行下面的操作===============    $ sudo mkdir /opt/tmp         #在根目录下的opt文件夹中新建tmp文件夹,用作安装文件的临时文件夹    $ sudo sh cuda_8.0.44_linux.run --tmpdir=/opt/tmp/      ====如果执行$ sudo sh cuda_8.0.44_linux.run 时提示/tmp空间不足,则执行上面的操作================  

   配置环境变量 

  $ sudo vim  ~/.bashrc                 #打开配置文件,如果没安装vim,可执行 $ sudo apt-get install vim  #安装vim
   按 i 键,在文件末尾插入下面两行,按esc键,输入 :wq ,保存退出。
   export PATH=/usr/local/cuda-8.0/bin:$PATH   exportLD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
    立即使配置的环境变量生效  
  source ~/.bashrc
 判断cuda是否安装成功
      执行:
   $ nvcc --version
      输出:
  nvcc: NVIDIA (R) Cuda compiler driver  Copyright (c) 2005-2016 NVIDIA Corporation  Built on Sun_Sep__4_22:14:01_CDT_2016  Cuda compilation tools, release 8.0, V8.0.44
    则表示安装成功。
   ===========若不幸安装失败,执行下面的命令卸载cuda,然后重新安装=========   $ sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl                     ===========若不幸安装失败,执行上面的命令卸载cuda,然后重新安装=========
   测试cuda的Samples
   $ cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery   $ make   $ sudo ./deviceQuery
     输出的最后两行类似这样的信息:
   deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 970   Result = PASS
4.使用Cudnn加速
        我们去官网下载与cuda8.0匹配的cudnn,https://developer.nvidia.com/cudnn ,我下载的是cudnn v5.05 for cuda8.0
        直接将文件解压,拷贝到cuda相应的文件夹下即可
    $ tar xvzf cudnn-8.0-linux-x64-v5.0-ga.tgz    $ sudo cp cuda/include/cudnn.h /usr/local/cuda/include    $ sudo cp cuda/lib64/*.* /usr/local/cuda/lib64    $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
5. 安装编译Caffe
     下载caffe

   $ sudo git clone https://github.com/BVLC/caffe.git
       安装第三方库
   $ sudo apt-get install libatlas-base-dev   $ sudo apt-get install libprotobuf-dev   $ sudo apt-get install libleveldb-dev   $ sudo apt-get install libsnappy-dev   $ sudo apt-get install libopencv-dev   $ sudo apt-get install libboost-all-dev   $ sudo apt-get install libhdf5-serial-dev   $ sudo apt-get install libgflags-dev   $ sudo apt-get install libgoogle-glog-dev   $ sudo apt-get install liblmdb-dev   $ sudo apt-get install protobuf-compiler

   安装OpenCV
       当前最新版OpenCV是3.2.0版本的
   $ cd caffe   $ sudo git clone https://github.com/jayrambhia/Install-OpenCV   $ cd Install-OpenCV/Ubuntu   $ sudo chmod +x *   $ sudo ./opencv_latest.sh
     我们可以通过如下命令查看OpenCV安装版本
   $ pkg-config --modversion opencv
     编译caffe
   $ sudo make clean        //每次需要重新编译Caffe的时候,在caffe文件夹下清除掉之前的编译结果   $ sudo make -j8   $ sudo make runtest   $ sudo make pycaffe 
   配置环境
    caffe运行时需要调用cuda的库,我们在/etc/ld.so.conf.d目录下新建一个caffe.conf文件,将所需要用的库的目录写入
   $ sudo vim /etc/ld.so.conf.d/caffe.conf
     添加:  /usr/local/cuda/lib64
     保存并退出      :wq 
     更新配置      
   $ sudo ldconfig
6.测试caffe
     下载mnist数据集

  $ cd ~/caffe                         //切换到caffe目录       注意:执行命令的时候最好在当前的caffe目录下,否则会报错,会找不到XXX文件  $ sudo sh data/mnist/get_mnist.sh     //获取mnist数据集  $ sudo sh examples/mnist/create_mnist.sh 
     开始训练
  $ sudo sh examples/mnist/train_lenet.sh
    训练结果  
I0114 13:41:23.117650  4189 solver.cpp:404]     Test net output #0: accuracy = 0.9908I0114 13:41:23.117681  4189 solver.cpp:404]     Test net output #1: loss = 0.0286537 (* 1 = 0.0286537 loss)I0114 13:41:23.117684  4189 solver.cpp:322] Optimization Done.I0114 13:41:23.117687  4189 caffe.cpp:254] Optimization Done.

7. 系统备份与还原
   系统备份

   首先打开终端进入根目录并获取root权限
  $ cd /  $ sudo su  # tar cvpzf Ubuntu_backup.tgz --exclude=/Ubuntu_backup.tgz --exclude=/mnt --exclude=/home --exclude=/proc --exclude=/sys --exclude=/lost+found /
    其中 Ubuntu_backup.tgz为备份系统的名字,exclude参数用于设定忽略的文件夹,最后那个/是指示需要备份的目录。备份完后就可以拷贝到其他盘里保存了。
  系统恢复
     在 Ubuntu_backup.tgz 所在文件夹下打开终端获取root权限,将 Ubuntu_backup.tgz拷贝到根目录下
  $ sudo su  # cp Ubuntu_backup.tgz /  # cd /  # tar xvpfz Ubuntu.tgz -C /


   新建备份时忽略的文件夹,如
  # mkdir /proc /lost+found /mnt /sys





重要参考:
Ubuntu16.04 64位 + NVIDIA GEFORECE GTX960 + CUDA-8.0.44   


附加参考:
   Ubuntu sudo update与upgrade的作用及区别
   Linux下 ln 命令详解 
   安装cuda时tmp空间不足问题的解决方法 
   Ubuntu16.04+cuda8.0+caffe安装教程

  Caffe 工程的一些编译错误以及解决方案(undefined reference to cv::imread)


最新文章

123

最新摄影

微信扫一扫

第七城市微信公众平台